上海海事大学2014年专升本考试大纲(高等数学1-管理类)

来源: 时间:2013-12-24

考试科目

高等数学1(管理类)

考试时间

2小时

试卷总分

150分

题型及分数构成

选择(20)、填空(20)、计算(80)、证明(10)、应用(20)

教材及主要参考书目

教材:微积分(立信会计出版社)第一版

参考书:微积分(中国人民大学出版社)赵树嫄 第三版

考试内容

一、函数、极限、连续(约30分)

1、了解函数的定义域、四条基本性质、函数的复合。

2、掌握极限四则运算法则,掌握等未定型极限的计算。

3、掌握利用两个重要极限的计算。

4、了解无穷小、无穷大概念,会用等价无穷小求极限,了解无穷小的阶。

5、理解函数连续的定义,了解间断点的概念,并会判别间断点的类型。

6、了解初等函数的连续性和闭区间上连续函数的性质(零点定理和介值定理)。

  • 一元函数微分学(约70分)
    • 理解导数和微分的概念,理解导数的几何意义,会求函数的切线与法线方程,理解函数的可导性与连续性之间的关系,会讨论分段函数的可导性,会利用导数定义计算极限。

2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。

3、掌握初等函数一阶、二阶导数的求法及简单初等函数的n阶导数求法。

4、掌握隐函数所确定的函数的一阶导数或微分的求法。

5、了解罗尔(Rolle)定理和拉格朗日(Lagrange)定理的条件和结论。

6、理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。

会利用单调性证明不等式。

7、会用导数判断函数图形的凹凸性,会求曲线拐点的坐标,会求曲线的渐近线方程。

8、掌握洛必达(L-Hospital )法则求的极限。

9、理解导数的经济应用,会求边际成本、边际收益、边际利润,弹性函数,会求经济函数的最值

三、一元函数积分学(约50分)

  • 掌握不定积分的基本公式,掌握不定积分两类换元法和分部积分法。
  • 理解变上限积分的求导定理,掌握牛顿(Newton)--莱布尼兹(Leibniz)公式。
  • 掌握定积分的换元法及分部积分法。

4、会计算区间无穷型的反常积分。

5、掌握定积分几何应用(直角坐标系下求平面图形的面积旋转体体积等)。

更多上海专升本考试信息请关注"魔都高校“微信公众号

魔都高校

相关更新